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IDENTIFICATION OF TRANSVERSE CRACK
LOCATION IN FLEXURAL VIBRATIONS OF

FREE–FREE BEAMS
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This paper deals with the crack identification procedure for free–free uniform beams in
flexural vibrations. The model of a transverse crack includes an equivalent linear spring,
connecting two segments of a beam. By measuring the changes of natural frequencies in
flexural vibrations it is possible to study the inverse problem—the crack site identification.
The method is based on the assumption that the crack stiffness does not depend on the
frequency of vibration. It requires at least two natural frequencies to be measured which
are changed due to the crack existence. The comparison with the crack sites, identified by
measuring both axial and flexural vibrations, showed better results for the flexural vibration
case.
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1. INTRODUCTION

In recent years, the dynamics of cracked structural members, especially beams, has been
the subject of much research. A crack in a structural member can be thought of as a local
flexibility, and as such, depends on crack depth. The existence of a crack further reduces
the natural frequencies of the structure, so consequently, by measuring changes in natural
frequencies the location of crack can be identified.

The problem of dynamic behavior of cracked beams has been studied by several authors.
Adams et al. [1] were among the first to use the equivalent spring to model a damaged
section. They used axial vibrations of one-dimensional beams to locate the damaged region
in inverse problem. Rizos et al. [2] proposed measurements of amplitudes at two distinct
points for a cantilever beam in flexural vibration in order to locate the depth and
magnitude of a crack. Narkis [3] studied the dynamics of a cracked, simply supported beam
for either bending or axial vibrations. He showed that the only information required for
accurate crack identification is the variation of the first two natural frequencies due to a
crack.

A short recent review, together with some other references can be found in Boltezar
et al. [4]. A considerable experimental work is described in Montalvao E Silva et al. [5].

The approach developed by Adams et al. [1] has been adopted for axial vibrations and
further extended to flexural vibrations. The crack is modelled as a torsional spring,
following Rizos et al. [2]. The solution is then applied to the inverse problem in order to
locate the damage site from measuring natural frequencies of flexural vibrations of a
cracked beam.
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Figure 1. Schematic model of the cracked free–free beam.

2. THEORY

The physical model being investigated in this work is a uniform Euler–Bernoulli beam,
supported free–free as shown in Figure 1. The length of a beam is L, and R0 denotes the
true position of a transverse surface crack extending uniformly across the width of the
beam, starting at the left end. The beam has constant cross-section A and area moment
of inertia I. Young’s modulus E and mass density r are also constant. The effect of material
damping on natural frequencies is assumed to be negligible. Starting with the
Euler–Bernoulli equation of motion governing the free flexural vibration of a uniform
beam gives

EI 14y/1x4 + rA 12y/1t2 =0. (1)

In the vicinity of the crack, this equation does not hold due to the abrupt change of the
cross-section. Since only flexural vibrations are considered, the rotational crack
compliance is assumed to be dominant in the local flexibility matrix. This is the basis of
the decision to model a crack with a torsional massless and dimensionless spring.

A mode of harmonic vibration can be written as

V(x)=A1 sin lx+A2 cos lx+A3 sinh lx+A4 cosh lx, (2)

where Ai are constants to be determined from the boundary conditions.
The problem of overcoming the published values of the material properties is solved by

calculating the effective value of Young’s modulus, following Adams et al. [1]. It can be
calculated as

Eeff = rAv2/l4I, (3)

where the dimensions of the beam are measured, the value of mass density is taken from
the literature, values for li are computed according to the boundary conditions and the
v are measured natural frequencies. Effective values for Young’s modulus must be found
for each natural vibrating mode of the uncracked beam separately.

Now consider the cracked beam from Figure 1. It is modelled by two uniform segments
of beams on both sides of the crack and the torsional spring between which model the
crack itself and is shown in Figure 2 [2]. Mode shapes can be written for both segments

Figure 2. Model of the cracked beam with linear spring.
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using equation (2). Boundary conditions include zero moments and shear forces at both
ends A and C. The continuity condition at the crack position B requires equality of
displacements, moments and shear forces at both sides of a crack.

y1B = y2B , y01B = y02B , y11B = y12B . (4)

The angular displacement between two beam segments at point B is related to the moment
of this section and to crack flexibility 1/kt

y'1B +M1/kt = y'2B . (5)

Boundary and continuity conditions result in a set of 8 homogeneous linear algebraic
equations for eight unknown coefficients. For a non-trivial solution, the determinant
defined in equation (6) must be zero (see page 4). In the determinant of equation (6)
d= kt /EI denotes relative torsional stiffness that models the crack.

In the procedure of identifying the crack location, first the natural frequencies of flexural
vibrations of the free–free beam are measured. Next, the eigenvalues li are computed using
the effective values of the Young’s modulus, which were determined for the uncracked
beam. Finally, the value d= kt /EI is computed from equation (6) as a function of possible
crack location R for each of the natural frequencies separately and shown for all of the
frequencies in the same graph. Based on the assumption that the crack stiffness does not
depend on the frequency of vibration, the values of crack stiffness must be the same at
the crack position for all of the measured natural frequencies. So one is looking for
intersection of the curves d= kt /EI to determine the crack location. This idea was
originally shown by Adams et al. [1] for axial vibrations of one-dimensional bars and is
here extended to flexural vibrations of one-dimensional beams.

3. EXPERIMENT

The experimental investigation was done on a homogeneous straight steel beam with
rectangular cross-sectional area h× b=15×30·2 mm. The length L was 498·5 mm and
the true relative crack position R0/L was 0·38.

The damage was artificially introduced by a saw, so consequently the width of a cut was
1 mm and remained open during the testing. The depth of the crack has been varied. The
boundary conditions were free–free; the beam was supported by a thin nylon rope the
length of which was 1·5 m. The excitation was impulsive. Vibration signals were acquired
by two accelerometers, both mounted at one end of the beam. One of them was attached
to pick up axial and the second to pick up flexural vibrations.

4. RESULTS

The positions of resonance peaks were experimentally measured for the first 6 natural
frequencies of flexural vibrations for the undamaged beam. They were 306·78, 841·19,
1635·25, 1672·0, 3933·0 and 5397·5 Hz. Relative frequency resolution was about 0·01%
according to the used zoom technique.

From the measured natural frequencies of the undamaged beam the values of the
effective Young’s modulus were computed using equation (3). They were found to be
191 900 MPa for the first and 189 880 MPa for the second natural frequency. By
computing them it is possible to overcome the influence of the mass of both accelerometers
at one end of the beam. The mass of each was 13 g and consequently the first few natural
frequencies decreased by 1·3–1·4% for flexural vibration.
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Figure 3. Relative crack stiffness versus crack position for the first 6 natural frequencies and for 2 different
relative crack depths: (a) a/h=11·3%; (b) a/h=36·3%.

The changes of the first 6 natural frequencies were then successively measured for each
increasing depth of a saw cut. The relative crack stiffness was finally computed using
equation (6) for several different values of relative crack depth. The results are plotted
against the relative possible crack position R/L and are shown in Figure 3 for two different
values of the relative crack depth, 11·3 and 36·3%.

The true crack position was at R0/L=0·38. In order to compare the adopted approach
the natural frequencies of axial vibrations were also measured and the crack location
identified, directly repeating the procedure of Adams et al. [1]. In Table 1 the differences
of the identified crack location versus true values are shown both for axial and for flexural

T 1

Identification of the crack location for axial and flexural vibrations,
difference to true crack site

Axial vibrations Flexural vibrations
Relative crack ZXXXXCXXXXV ZXXXXCXXXXV

depth (%) R/L Difference (%) R/L Difference (%)

4 0·37 −1·1 0·38 −0·1
8 0·35 −3·1 0·379 −0·2

11·3 0·34 −4·1 0·38 −0·1
15 0·33 −5·1 0·38 −0·1
21·3 0·35 −3·1 0·376 −0·5
27·7 0·36 −2·1 0·377 −0·4
36·63 0·368 −1·3 0·376 −0·5
51 0·37 −1·1 0·374 −0·7
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vibrations for the beam under consideration. As can be seen from Table 1, the error of
the damage site location for flexural vibrations is less than 1% in the range from 4–51%
of the relative crack depth. For the tested beam, one found in the present case of free–free
support the use of flexural vibrations to be superior over axial.

5. CONCLUSIONS

A method for identifying the open transverse crack location of a uniform beam,
supported free–free was developed by extending the known approach from axial to flexural
vibrations. The crack was theoretically simulated by an equivalent linear spring. In order
to determine crack location, the changed natural frequencies of flexural vibrations must
be measured with great accuracy. To overcome the influence of unsatisfactory precision
of published data for material properties such as Young’s modulus as well as the effect
of the accelerometers’ mass to natural frequencies, the known principle of the effective
value of the Young’s modulus was adopted, resulting from the measurements of the natural
frequencies of uncracked beam for each vibrating mode.

The method is based on the assumption that the stiffness of the equivalent spring which
models the crack must be the same for all of the vibrating modes of flexural natural
vibrations. So consequently, by plotting the relative stiffness along the length of the beam
for distinct natural frequencies, the crack site can be identified by the intersection of the
curves. Six natural frequencies were measured in order to improve the statistics of the
curves’ intersection.

The method gives reliable and accurate results (within 1%) at relative crack depths
bigger than 5%. By also measuring the natural frequencies of axial vibrations, the
comparison between flexural and axial based identification procedures showed better
results with the former.
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